

Course Unit Rehabilitation Technology			Field of study	Orthopedics and Rehabilitation		
Master in	Biomedical Technology - Biomechanics and Rehabilitation			School	School of Technology and Management	
Academic Year	2018/2019	Year of study	1	Level	2-1	ECTS credits 6.0
Туре	Semestral	Semester	2	Code	5025-421-1205-00-18	
Workload (hours)	162	Contact hours	T - TP	30 PL 30 T nd problem-solving; PL - Problem-	C - S - solving, project or laboratory; TC	Fieldwork; S - Seminar; E - Placement; OT - Tuturial; O - Oth

Name(s) of lecturer(s)

João Paulo Ramos Teixeira, João da Rocha e Silva

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- At the end of the course unit the learner is expected to be able to: 1. acknowledge the vocal tract and auditory human apparatus; 2. be awareness of the aid that can be given by synthesis and recognition speech systems to the hearing, visual and vocal tract rehabilitation; 3. knowing the methods of producing synthetic speech (synthesis engines) and speech recognition as well as the difficulties and limitations of each model; 4. know interface systems for rehabilitation assistance; 5. know and extract some important characteristics of the speech signal in identifying pathologies associated with vocal tract apparatus; 6. understand and analyze the pathological human gait, compared to normal gait; 7. use technical kinematical, thermographic and electromyography analysis in the context of rehabilitation.

Prerequisites

Before the course unit the learner is expected to be able to: 1. Programming in Matlab, C or other environment; 2. know the Functional anatomy or similar.

Course contents

Support technologies for persons with disabilities and the elderly - technological, human and socio-economic components. Accessibility. Aids for Communication, Mobility, Handling and Guidance. Instrumentation and biomechanical assessment. Posture and locomotion. Neurmuscular function.

Course contents (extended version)

- 1. Speech production

 - Human speech apparatus
 Hearing apparatus

 - Speech production model
 Determination of Pitch F0
 Jitter and Shimmer

 - Formants
- Furnans European Portuguese phonetic alphabet 2. Text-to-Speech (TTS) systems Blocks of a TTS system

 - Synthesis models Commercial TTS systems
- Commercial TTS systems
 TTS systems support to visual or phonatory impaired persons
 Automatic Speech Recognition (ASR) systems
 Speaker identification
 Isolated word recognition
 Continuous speech recognition
 ASR systems support to hearing of visual impaired persons
 Artificial Neural Networks (ANN)
 Architecture of ANN
 Learing process

 - Learning process
 Feed-forward ANN

 - Application of ANN ANN under Matlab
- 5. Instrumentation and biomechanical assessment
- Kinematical procedures
- Kinetic procedures
 EMG procedures
- Thermographic procedures
 6. Posture and locomotion
- concepts
 Efficiency and energy cost
 Mechanical work, mechanical power and mechanical energy
 Neuromuscular function
- - Neural contributions for the strength Morphological contributions for the strength
 - Hormonal contributions for the strength
 Strength mechanical models

 - Streching shorting cycle

Recommended reading

- An introduction to rehabilitation engineering, Cooper, Rory A. New York : Taylor & Francis, cop. 2007;
 Fundamentals of Speech Synthesis and Speech Recognition Basic Concepts, State of the Art and Future Challenges, Eric Keller Jonh Wiley & Sons 1994;
 Speech Processing and Synthesis Toolboxes, Childers, D. G., J. Wiley and Sons, 2000;
 Biomechanics and Motor control of Human Movement, David A. Winter, John Wiley, 1990;
 Biomechanics and Biology of movement. Human Kinetics, IL, Nigg B, MacIntosh B, Mester J., 2000.

Teaching and learning methods

During the lectures, the teacher presents the subject and the students begin their work / short-projects. During the 4 non presence hours students do self-study and complete the work.

Assessment methods

Single - (Regular, Student Worker) (Final, Supplementary, Special)
 Experimental Work - 60%
 Final Written Exam - 40%

Language of instruction

- Portuguese, with additional English support for foreign students.
 Portuguese
 Spanish

_	Electronic validation			
	João da Rocha e Silva, João Paulo Ramos Teixeira	Ângela Paula Barbosa da Silva Ferreira	Fernando Jorge Coutinho Monteiro	Nuno Adriano Baptista Ribeiro
Г	11-03-2019	01-04-2019	02-04-2019	27-06-2019